Convergence rates in the law of large numbers for long-range dependent linear processes
نویسندگان
چکیده
Baum and Katz (Trans. Am. Math. Soc. 120:108-123, 1965) obtained convergence rates in the Marcinkiewicz-Zygmund law of large numbers. Their result has already been extended to the short-range dependent linear processes by many authors. In this paper, we extend the result of Baum and Katz to the long-range dependent linear processes. As a corollary, we obtain convergence rates in the Marcinkiewicz-Zygmund law of large numbers for short-range dependent linear processes.
منابع مشابه
On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables
In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.
متن کاملStrong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables
We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.
متن کاملMARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....
متن کاملMarcinkiewicz Law of Large Numbers for Outer- Products of Heavy-tailed, Long-range Dependent Data
The Marcinkiewicz Strong Law, lim n→∞ 1 n 1 p n ∑ k=1 (Dk −D) = 0 a.s. with p ∈ (1, 2), is studied for outer products Dk = XkX T k , where {Xk}, {Xk} are both twosided (multivariate) linear processes (with coefficient matrices (Cl), (Cl) and i.i.d. zero-mean innovations {Ξ}, {Ξ}). Matrix sequences Cl and Cl can decay slowly enough (as |l| → ∞) that {Xk, Xk} have long-range dependence while {Dk}...
متن کاملThe Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables
In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017